Practical Neuroangiography, 3rd ed

Edited by Pearse Morris

This book is intended for those learning or performing neuroangiography, primarily neuroradiology fellows and radiology residents. It is divided into three sections covering techniques and safety, anatomy, and the diagnosis and treatment of vascular diseases as they relate to neuroradiology. Endovascular techniques are introduced and discussed as they apply to specific disease processes. The text is well organized, and the images are of high quality. The full text and the images are also available in an online version. The key chapter on performing cerebral angiography is, as suggested by the book’s title, full of practical tips and tricks, with excellent accompanying diagrams and images. This new edition includes computed tomographic and magnetic resonance perfusion images and a stronger emphasis on radiation risks and safety.

This updated text is an excellent learning resource for neuroradiology fellows or radiology residents learning neuroangiography and is a valuable review for those previously trained in these procedures.

Reviewed by Jason Shewchuk, MD

Simulation in Radiology

Edited by Hugh J. Robertson, John T. Paige, and Leonard R. Bok

Simulation in Radiology is a dynamic textbook explaining in great detail a cutting-edge educational method of professional development. Simulation is a wide variety of computer-based and model-based programs and exercises designed specifically to standardize the education of a given profession—in this case the healthcare profession of radiology. Simulation, which has been an effective educational tool in many professions other than medicine, has the proven ability to safely and with reproducibility teach specific cognitive and technical skills to members of a given profession while allowing the tester (in this case a radiology resident or fellow) the opportunity for deliberate and repetitive practice and to be objectively evaluated. Simulation-based training has the ability to effectively teach both low-frequency, high-risk events as well as more common procedures. Simulation training enhances patient safety and care and is effective in team-based learning. In their book, Simulation in Radiology, the first such book detailing simulation-based training and education specific to diagnostic and interventional radiology, the authors have done an excellent job at apprasing the reader of the current state as well as the future trends of simulation training in the field of medical imaging.

This well-thought-out book contains 26 chapters divided into three sections. The first section, “Simulation: Technical Considerations,” discusses general principles, ethical considerations, and regulations and provides an overview of computer-based simulation training. This section contains four chapters: “Principles of Simulation,” “Ethics and Regulations of Cadaver Use in Simulation,” “An Overview of Computer Use in Simulation,” and “Simulation Equipment, Commercial and Noncommercial.”

Section 2, “Simulation in Education,” provides the reader with a detailed overview of the educational principles and testing necessary to suc-
cessfully implement and integrate effective simulation-based training into an established radiology residency program. This section contains four chapters: “Educational Principles in Simulation,” “Assessment in Simulation,” “Building and Incorporating Simulation into a Radiology Residency Program Curriculum,” and “Development and Operation of a Simulation Laboratory at a Major Medical Center.”


Simulation in Radiology is a well-planned and well-organized book that will be well received by its readers. In addition to the three editors, Hugh J. Robertson, John T. Paige, and Leonard R. Bok, there are 47 contributors—physicians, scientists, and other professionals—both from the United States and internationally. This book is well written and easy to read. The authors have clearly surpassed their goal of creating “a reference for individuals interested in incorporating simulation-based training into any subspecialty of radiology.” Although this book may have been specifically written for radiology residency and fellowship program directors, it would also be of value to staff radiologists at teaching institutions and medical educators, including program directors in nonradiology disciplines, medical school deans, and medical school basic science faculty—all of whom would benefit from this book’s updated information on simulation-based training. Given its price and ease of reading, I highly recommend Simulation in Radiology.

Reviewed by Robert D. Staffey, DO