Counting Deaths Due to Medical Errors

To the Editor: In their Controversies article about medical errors, Leape and colleagues praised the safety record of anesthesia: “Everyone . . . agrees that the current practice of anesthesia provides an outstanding example of how a high level of safety can be achieved in health care. Anesthesia is the only system in health care that begins to approach the vaunted level of perfection that other industries strive for. Mortality from elective anesthesia has declined 10-fold in the past several decades as the result of a concerted effort to improve safety.” Similarly, the Institute of Medicine (IOM) report To Err Is Human: Building a Safer Health System stated: “Studies . . . indicate that, today, anesthesia mortality rates are about one death per 200,000-300,000 anesthetics administered, compared with two deaths per 10,000 anesthetics in the early 1980s.”

The improvement has actually been considerably less than those reports suggest. Based on 72,959 anesthetics administered over the past 10 years (1989-1999), Newland et al recently reported an incidence of cardiac arrest attributable to anesthesia of 0.69 per 10,000 anesthetics and a death rate due to anesthesia-attributable cardiac arrest of 0.55 per 10,000. Biboulet et al reported 11 cardiac arrests in 101,769 anesthetics administered during 1989-1993 (1.1 per 10,000) and an anesthesia-related mortality rate of 0.62 per 10,000 elective anesthetics. Similarly, Lagasse found anesthesia-related mortality rates of 1 per 12,641 anesthetics (0.79 per 10,000) based on 37,924 cases (1992-1994) and 1 per 13,322 (0.75 per 10,000) based on 146,548 anesthetics (1995-1999) at 2 medical centers.

From these studies, the current death rate related to anesthesia care appears to be about 1 in 15,000 anesthetics, a 3-fold improvement over the past several decades. If 20 million anesthetics are performed annually in the United States (a conservative estimate), the above evidence suggests that 1100 to 1600 anesthesia-related deaths occur in the United States every year.

Another important consideration is that improvement in anesthesia safety is not fully reflected in death rates that are unadjusted for risk. Older and sicker patients, who are more likely to experience adverse consequences of anesthesia, are increasingly receiving anesthesia, and more high-risk operations are being performed overall. Risk-adjusted indicators of anesthesia safety are needed to document improvement, which is probably substantially greater than that reflected in raw death rates.

Ronald A. Gabel, MD
Department of Anesthesiology
University of Rochester
Rochester, NY

rofile.

Topsy studies consistently find undiagnosed disease as the cause of death, which is an undercount of injuries. All replications of the HMPS—in Australia, the United Kingdom, New Zealand, and Denmark—have found adverse event rates that are 2 to 4 times higher, and preventable death rates that are 50% to 100% higher. Autopsy studies consistently find undiagnosed disease as the cause of death in 10% to 20% of patients, of whom half could have been successfully treated. Applied to current US hospital mortality, this yields 40,000 to 80,000 preventable deaths annually from missed diagnoses alone. Studies of specific types of adverse events, such as adverse drug events, invariably docu-

ment much higher rates. Outpatient adverse events are also considerable and were not included in the HMPS.8

But from a safety perspective, focusing attention on mortality and life expectancy sends the wrong message. Hospitals cannot be made safer by counting bodies. The transforming insight of the IOM report was that most errors are due to systems failures, not to individual carelessness or incompetence. We believe that identifying these systems failures and fixing them is the safety agenda, not counting deaths, and it is time to get on with it.

Lucian L. Leape, MD
Department of Health Policy and Management
Harvard School of Public Health
Boston, Mass

Donald M. Berwick, MD
Institute for Healthcare Improvement
Boston

David W. Bates, MD, MSc
Department of Medicine
Brigham and Women’s Hospital
Boston

\textbf{Virologic Outcomes of Complex Drug Regimens for Human Immunodeficiency Virus}

To the Editor: Dr Hammer and colleagues1 reported that increasing to a more potent regimen (including 2 protease inhibitors [PIs] and efavirenz) improved virologic outcome at 24 weeks among patients with human immunodeficiency virus (HIV) who had not improved on a PI-based regimen. Despite these intensive, complex regimens (including up to 40 pills daily), only 47% of patients receiving 2 PIs and who were naive to efavirenz achieved an undetectable plasma HIV-RNA load. It would be helpful to know more about the factors, apart from regimen potency, that also contributed to successful therapy such as prior therapy, prior patient adherence, on-study tolerability, and on-study adherence. A potent but intolerable regimen is doomed to fail, especially for longer periods, as is the prescription of a complex regimen to a patient who has been unable to adhere to similar regimens in the past.2

The authors did not describe whether they enrolled patients failing a first regimen only or whether patients with prior3 also suggest that the statistics used to estimate the number of injuries due to medical errors1 are similarly unsup-
nucleoside analog mono/dual therapy were enrolled. Inclusion of substantial numbers of patients with multiple prior regimens would likely reduce the capacity to detect differences of activity between study arms.

It is also unclear why these patients had failed their baseline regimens. Given that adherence and adverse effects are strong predictors of regimen outcome, it is possible that outcomes may have been different in those who had failed for previous nonadherence or adverse events rather than for suboptimal prescribing (eg, dual therapy).

It would also be helpful to know the relative contributions to virologic failure of baseline viral susceptibility, poor adherence, regimen complexity/pill burden, choice of nucleoside analogs, and adverse events. The latter seems especially likely given that only 157 (48%) of 324 patients randomized to dual-PI therapy completed 24 weeks of therapy (with very few developing a new acquired immunodeficiency syndrome–defining illness or dying). Indeed, 19% and 28% of patients had grade 3 or grade 4 clinical or laboratory adverse event, respectively. It is not stated what percentage of these events (or of grade 1-2 events for that matter) resulted in reduced adherence to therapy or withdrawal from the study.

If suboptimal adherence (due to toxicity and regimen complexity) was the main contributor to the high failure rate in this study, then the appropriate response would be simpler, better tolerated therapy. On the other hand, if failure was due mainly to lack of potency, then patients who fail PI-based therapy will require even more potent regimens.

Andrew Carr, MD
HIV, Immunology and Infectious Diseases Clinical Services Unit
St Vincent’s Hospital
Sydney, Australia

Financial Disclosure: Dr Carr has received consultancies and honoraria from Abbott, Bayer, Boehringer-Ingelheim, Bristol-Myers Squibb, GlaxoSmithKline, and Roche, and grant support from Abbott, Boehringer-Ingelheim, Bristol-Myers Squibb/ DuPont, GlaxoSmithKline, Pfizer-Agouron, Roche, and Schering-Plough.

In Reply: In response to Dr Carr, the patients in our study were highly experienced with antiviral drugs: 100% had prior PI exposure (an entry requirement) and of these 79% had exposure to 2 or more PIs; 100% were nucleoside analog experienced; and 44% were nonnucleoside reverse transcriptase inhibitor (NNRTI) experienced. This high degree of drug experience was reflected in the baseline phenotypic drug susceptibilities. As described in our article, of 139 randomly selected patients at baseline, 19% to 66% had viral strains with 50% inhibitory concentrations of more than 2.5-fold above the reference strain for at least 1 of the 4 drugs common to all study arms.

We did in fact collect data on patients’ adherence at baseline and found that this was not a significant predictor of virologic failure. We certainly agree, and noted in our article, that the pill burden was high and no doubt a challenge to adherence. This, however, was not the sole reason for virologic failure. In a univariate logistic regression analysis of the virologic, pharmacokinetic, and adherence contributors to virologic failure, the major contributors to virologic failure were baseline efavirenz susceptibility, efavirenz clearance, NNRTI experience, treatment discontinuation for toxicity, and grade 3/4 toxicity. Baseline HIV-RNA levels and on-study treatment adherence were statistically significant but less important predictors.

The complexity of virologic failure in our study does not change our basic conclusion that patients who received the dual-PI combination regimens had better virologic outcomes than those in the single PI arm. Combining maximal potency of regimens with simplicity, convenience, and lack of toxicity is certainly the appropriate goal for antiretroviral therapy.

Scott M. Hammer, MD
Department of Medicine
Columbia University College of Physicians and Surgeons
New York, NY

In a univariate logistic regression analysis of the virologic failure. We certainly agree, and noted in our article, that the pill burden was high and no doubt a challenge to adherence. This, however, was not the sole reason for virologic failure. In a univariate logistic regression analysis of the virologic, pharmacokinetic, and adherence contributors to virologic failure, the major contributors to virologic failure were baseline efavirenz susceptibility, efavirenz clearance, NNRTI experience, treatment discontinuation for toxicity, and grade 3/4 toxicity. Baseline HIV-RNA levels and on-study treatment adherence were statistically significant but less important predictors.

The complexity of virologic failure in our study does not change our basic conclusion that patients who received the dual-PI combination regimens had better virologic outcomes than those in the single PI arm. Combining maximal potency of regimens with simplicity, convenience, and lack of toxicity is certainly the appropriate goal for antiretroviral therapy.

Scott M. Hammer, MD
Department of Medicine
Columbia University College of Physicians and Surgeons
New York, NY

Florin Vaida, PhD
Kara K. Bennett, MS
Department of Biostatistics
Statistical and Data Analysis Center
Harvard School of Public Health
Boston, Mass

John W. Mellors, MD
Department of Medicine
University of Pittsburgh
Pittsburgh, Pa

Financial Disclosure: Dr Hammer is a consultant or site investigator for Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline, Roche-Trimedis, Shionogi, Shire Biochem, Tibotec-Virco, and Triangle. Dr Mellors has received research grants from Bristol-Myers Squibb, Chiron, DuPont Pharmaceutical, GlaxoSmithKline, Merck and Co, and Abbott Laboratories, and serves as a consultant to Achillion, Agouron/Pfizer, Boehringer-Ingelheim, Bristol-Myers Squibb, DuPont Pharmaceutical, GlaxoSmithKline, Gilead Sciences, Intelligent Therapeutics Solutions, Merck and Co, Novirio, Pharmasset, Triangle Pharmaceuticals, Trimeris, Tibotec-Virco, and Visible Genetics.

Alfredo García de Olalla, Peter J. Carlin, Andrew Carr, and Lawrence S. Corey.

Allocation Concealment in Clinical Trials

To the Editor: Dr Balk and colleagues1 found that randomized controlled trials (RCTs) with high scores for allocation concealment, double-blinding, and 22 other quality measures had similar results as low-quality trials, as defined by these indicators. However, the authors’ ambitious efforts may have diluted the quality of some their assessments and hindered comparability with prior studies.

Most notably, Balk et al defined allocation concealment differently than in the studies they apparently wanted to repli-
cate. First, in their definition, opaque envelopes constituted adequate allocation concealment whereas in earlier studies of trial quality, envelopes had to be described as serially numbered, sealed, and opaque.2-4 This may seem a minor point, but because envelopes are the most commonly reported approach, a minor definitional deviation can have major effects. In one study, about half of authors reported using an envelope method (of those reporting any allocation concealment mechanism), but less than a quarter of those stated that the envelopes were serially numbered, sealed, and opaque.5

Second, unlike other authors, Balk et al did not incorporate drugs prepared by the pharmacy in their definition of allocation concealment. Again, that could cause large differences in results; pharmacy allocation has been present in almost a third of all trials classified as having adequate allocation concealment.3

Third, the authors classified trials as having adequate allocation concealment when the “randomization method was performed using computers,” whereas earlier studies did not. Although computers often are used to generate random sequences, they are rarely involved in the allocation mechanism, particularly during the 1966-2000 period studied by Balk et al. We worry that some of those cases may have been inadvertently classified as having used an adequate allocation concealment mechanism by virtue of having mentioned a computer.

Finally, Balk et al overlooked another aspect of assessing the impact of allocation concealment. Other investigators have categorized trials into 3 categories: adequately concealed, inadequately concealed, and unclearly concealed.2-5 Differences emerged, particularly in heterogeneity, between the inadequately concealed and unclearly concealed trials.5 We question whether the authors should expect conformity with prior studies if they fail to use the prior definitions.

Kenneth F. Schulz, PhD, MBA
Family Health International
Research Triangle Park, NC
Douglas G. Altman, DSc
Centre for Statistics in Medicine
Institute of Health Sciences
Oxford, England
David Moher, MSc
Chalmers Research Group
University of Ottawa
Ottawa, Ontario

To the Editor: Dr Balk and colleagues1 found no consistent relationship between the size of treatment effects in RCTs and their methodological quality. However, previous studies found that the lack of an allocation system that prevents the investigator from knowing in advance which treatment the next person will get was consistently associated with larger treatment effects.2 Proper concealment of the allocation sequence thus appears to be crucial to prevent selection bias in RCTs.3 Balk et al argue that such quality effects may not be as important as previously thought.

We updated our meta-analysis3 of the relevant studies and found that the results of Balk et al differ from those from earlier studies, and introduce heterogeneity (P<.001) into a previously homogeneous meta-analysis (FIGURE). Nevertheless, taken together, these studies continue to show that inadequate concealment of allocation is associated with larger treatment effects (ratio of odds ratios, 0.75; 95% confidence interval [CI], 0.63-0.89). Similarly, they show that absence of blinding is associated with larger effects (ratio of odds ratios, 0.88; 95% CI, 0.78-0.99).

It is possible that the discordant results of Balk et al were due to their selection of meta-analyses that had significant between-study heterogeneity. However, differences in trial quality are only one of several possible sources of between-trial heterogeneity. Other sources, such as differences in study populations and interventions, publication bias, or language bias, may have introduced error variance and reduced the study’s ability to detect the influence of trial quality.

Heterogeneity is not a prerequisite for detecting effects of trial quality in meta-analysis: we found, for example, a strong association of treatment effect estimates with lack of blinding in a meta-analysis with little between-trial heterogeneity.4 It is also possible that inconsistencies in the assessments of trial quality between the authors may have resulted in the misclassifi-

Figure. Comparison of Treatment Effect Estimates From Trials With Inadequate or Unclear Allocation Concealment With Adequately Concealed Trials

<table>
<thead>
<tr>
<th>Source</th>
<th>OR (95% CI)</th>
<th>Odds Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schulz et al, 1995</td>
<td>0.66 (0.59-0.73)</td>
<td>0.63 (0.45-0.88)</td>
</tr>
<tr>
<td>Kjaergard et al, 2001</td>
<td>0.60 (0.31-1.15)</td>
<td>0.79 (0.70-0.89)</td>
</tr>
<tr>
<td>Balk et al, 2002</td>
<td>0.95 (0.83-1.13)</td>
<td>Combined 0.75 (0.63-0.89)</td>
</tr>
</tbody>
</table>

Odds ratios (ORs) lower than 1 represent trials that had inadequate or unclear allocation concealment overestimate effects compared with adequately concealed trials. CI indicates confidence interval. The trials, except for Balk et al,1 are referenced in Juni et al.4

(Reprinted) JAMA, November 20, 2002—Vol 288, No. 19

©2002 American Medical Association. All rights reserved.
cation of some trials, thus leading to an underestimation of associations between treatment effects and methodological quality. Unfortunately, Balk et al do not report k values, which would allow an unbiased assessment of the degree of nonrandom agreement between the investigators.

We agree with Balk et al, and have argued previously, that it is problematic to adjust or “correct” the results from a single trial, or a meta-analysis of several trials, for trial quality. However, we are concerned that their study will be misinterpreted as showing that the standards for the conduct and reporting of RCTs, which we and many others have promoted in recent years," are not important. Theoretical considerations, underpinned by our reanalysis, provide arguments for the importance of allocation concealment. The fact that in empirical studies aspects of the design and conduct of trials appear to be more important in some situations but less important in others does not mean that these standards should be optional.

Peter Juni, MD
Matthias Egger, MD
Departments of Social and Preventive Medicine and Rheumatology
University of Bern
Bern, Switzerland

2002;287:2973-82.
2001;134:663-694.
2001;323:42-46.
2001;31:1-5.

In Reply: Dr Schulz and colleagues suggest that our results may differ from previous reports because definitions of quality measures, specifically allocation concealment, were not identical. Their point highlights a difficulty in applying quality measures and achieving consensus on precise definitions. We took great care to create definitions that were consistent with most prior applications of these quality measures and that were also unlikely to be misinterpreted by data extractors. We ended with very high agreement among data extractors.

Nevertheless, to address their concerns, we repeated our analysis by having a single data extractor (E.K.B.) use his definition for allocation concealment. Most changes in classification involved studies using envelopes. Studies in which pharmacists allocated treatments and most that used computers (as opposed to computer-generated lists) were coded as centrally randomized and thus were generally adequately concealed. The reclassification of studies and relative odds ratios for adequate vs inadequate allocation concealment and for adequate vs inadequate and unclear allocation concealment are shown in the Table. No significant differences favoring adequate concealment were found between adequately and inadequately concealed studies. Inadequately or unclearly concealed infectious disease trials actually showed a smaller treatment benefit than other infectious disease trials. This relationship was not statistically significant in the other medical domains or in the overall analysis.

Drs Juni and Egger state that many causes of heterogeneity among the published studies may be associated with the magnitude of the treatment effect other than quality measures. Indeed, we discussed this point in our article. The relationship between study quality and treatment effect is complex. We have highlighted that there is heterogeneity in the association of quality measures with treatment effect among different medical domains. Our reanalysis reported herein also highlights how there can be heterogeneity due to minor differences in quality measure definitions. We believe that the meta-analysis of meta-analyses performed by Juni and Egger obscures understanding the reasons for discrepancies found among the studies. Calculating a single estimate of association in this situation can be misleading.

We agree that our results should not be interpreted to mean that proper blinding and randomization are not important. Trial quality measures, however, should not be used as a single universal determinant for choosing studies for inclusion in meta-analyses. Inadequate allocation concealment may inflate the treatment effect sometimes, but may deflate the treatment effect.

Table. Studies With Adequate, Inadequate, and Unclear Allocation Concealment

<table>
<thead>
<tr>
<th>Allocation Concealment</th>
<th>Overall</th>
<th>Cardiovascular Disease</th>
<th>Infectious Disease</th>
<th>Pediatrics</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Inadequate</td>
<td>9</td>
<td>3</td>
<td>18</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Unclear</td>
<td>70</td>
<td>73</td>
<td>61</td>
<td>65</td>
<td>81</td>
</tr>
</tbody>
</table>

Relative Odds Ratio (95% Confidence Interval)*

| Adequate vs inadequate (n = 29)† | 0.82 (0.43-1.57) | NA | NA | NA | NA |
| Adequate vs inadequate and unclear (n = 276) | 0.89 (0.72-1.09) | 1.01 (0.85-1.21) | 0.61 (0.40-0.98) | 1.07 (0.60-1.74) | 1.01 (0.58-1.70) |

*A relative odds ratio of less than 1.00 suggests that the benefit of treatment appeared to be greater in high-quality than in low-quality trials. The relative odds ratio definition used here is the inverse of the definition of Juni et al. NA indicates not applicable (too few studies to analyze separately in each domain).

†Fifty-three additional studies coded as having adequate or inadequate concealment were excluded because of sparse numbers of eligible studies within each meta-analysis.
or have no relationship with it in other cases. Furthermore, even among experts, allocation concealment, as well as other quality measures, are subject to diverse interpretations.

Ethan M. Balk, MD, MPH
Peter A. L. Bonis, MD
Joseph Lau, MD
Division of Clinical Care Research
Tufts-New England Medical Center
Boston, Mass

John P. A. Ioannidis, MD
Department of Hygiene and Epidemiology
University of Ioannina School of Medicine
Ioannina, Greece

CORRECTIONS

Incorrect Number: In Appendix IA, Table 2 published in the September 4, 2002, issue of THE JOURNAL (2002;288:1143-1145), on page 1145 Baylor College of Medicine’s total enrollment should be 667 students.

Incorrect Affiliation: In the Medical News & Perspectives article entitled “Sewage Yields Clues to SV40 Transmission” published in the September 18, 2002, issue of THE JOURNAL (2002;288:1337-1338), Michael Carbone, MD, PhD, is erroneously referred to as “a University of Chicago pathologist.” Carbone is now associate professor in the Department of Pathology at Loyola University Chicago Stritch School of Medicine, Cardinal Bernardin Cancer Center, in Maywood, Ill. He was previously at the University of Chicago.

Incorrect Data: In the article entitled “Employer Drug Benefit Plans and Spending on Prescription Drugs” published in the October 9, 2002, issue of THE JOURNAL (2002;288:1733-1739), there was incorrect data in a table. On page 1736, in Table 2, the number (percentage) for patient characteristic aged 35 to 44 years stated “207 473 (29.5)” but should have read “185 025 (26.3).”

CME ANNOUNCEMENT
Online CME to Begin in Mid-2003

In mid-2003, online CME will be available for JAMA/Archives Journals and will offer many enhancements:

- Article-specific questions
- Hypertext links from questions to the relevant content
- Online CME questionnaire
- Printable CME certificates and ability to access total CME credits

We apologize for the interruption in CME and hope that you will enjoy the improved online features that will be available in mid-2003.